*** SCIENCE OF BEING SEEN LIVE ONLINE *** The in-depth detail


Imagine driving down this road. What if a vehicle appears from left, and turns right across your path? How soon will you see it? And when will the driver see you…

…if he or she sees you at all?

Junction collisions – the so-called SMIDSY ‘Sorry Mate I Didn’t See You’ crash are the most common accidents involving motorcycles AND cars. Yes, drivers get it wrong in front of other cars too!

And even more alarmingly, many riders and drivers fail to spot the developing collision until too late.

Why? Isn’t it easy to scan a junction? Unfortunately, the process doesn’t work in the ways most of us think. And so we ALL make errors which lead to the so-called ‘Looked But Failed To See’ (LBFTS) error.

Here’s the bad news. We’ve been investigating this driving error for over half a century, and whilst the research papers have a very…

View original post 304 more words

*** SCIENCE OF BEING SEEN *** The importance of lateral movement

*** SCIENCE OF BEING SEEN *** The importance of lateral movement
“Where other drivers turn across the path of a motorcyclist, this can be because the motorcyclist…is not seen by the driver…This points to the need to improve driver awareness of motorcycles, as well as raising awareness among motorcyclists of this issue, which is a key factor in many collisions. By running headlights during the daytime and wearing high visibility clothing, motorcyclists can help to improve their visibility to drivers.”

That’s from Transport for London’s ‘Motorcycle Safety Action Plan’ published back in 2016. I don’t know if there’s been an update since, but essentially it ignores one very big problem behind the ‘Sorry Mate I Didn’t See You’ SMIDSY collision.


The motorcyclist also has to be aware that they have to position TO BE SEEN. When plans like this ignore this issue, it’s hardly surprising that so many riders still seem completely oblivious to the problem – OUT OF SIGHT, OUT OF MIND.

In researching the Science Of Being Seen #SOBS, I found that there were actually THREE causes of these crashes.

LOOKED BUT FAILED TO SEE: These are the visual perception failures where a bike that is capable of being seen isn’t spotted. These make up around 1 in 3 of all junction collisions, and for a variety of reasons to do with the way the eye ‘sees’ the world and the brain processes the visual feed, these drivers simply didn’t pick out the presence of a motorcycle even though it was there to be seen. These ‘Looked But Failed To See’ crashes are so common they are actually referred to as LBFTS incidents in the research literature.

Causes include ‘saccadic masking’, which happens when our vision shuts down as we turn our head, a narrow field of clear vision which leaves much of our ‘worldview’ dependent on peripheral vision, and ‘motion camouflage’ where the bike simply ‘grows’ against the background and the driver’s brain fails to detect it.

I have a very good clip of a Spitfire simply ‘appearing out of nowhere’ as it flies directly towards the camera. It’s visible if you look in the right place, but with our attention focused on the presenter, it falls outside our narrow cone of clear vision and in peripheral vision, and is effectively invisible. It’s only when it’s scarily close that it simply ‘pops out’ at the viewer.

And I think we’d all agree that a Spitfire is rather bigger than a motorcycle!

The problem is that lack of lateral movement to attract our attention, and there’s a very specific form of motion camouflage that happens when two moving vehicles are on a collision course. This problem has a name – it’s known as the ‘Constant Bearing, Decreasing Range’ issue. It’s a term used in navigation and flying which means that some object, usually another ship viewed from the deck or bridge of one’s own ship or another aircraft viewed from the cockpit, is getting closer but staying at the same angle – or maintaining the same absolute bearing.

If they both continue on the same course at the same speed, they WILL collide. And it CAN happen on the roads. Just ask yourself where; for example, when you’re approaching a roundabout and another vehicle is on an intersecting course and will arrive at the same time, or when approaching a cross-roads and another vehicle is approaching head-on. Since neither vehicle will appear to move relative to the background, it can be difficult for either driver / rider to perceive the other, even when in clear view. I’ll be coming back to this in a moment.

LOOKED, SAW AND MISJUDGED: And then there is a second type of driver perception error where the driver actually sees the bike, but thanks to the tall and narrow shape of a motorcycle, simply misjudges speed and distance and therefore miscalculates the all-important ‘time to collision’. Once again, it’s a well-known phenomenon in the research and accounts for a further 1 in 3 of junction collisions, usually on faster roads. These are ‘looked, saw and misjudged’ errors.

From the point of view of the rider, the result is that the driver begins a dangerous manoeuvre. Unfortunately, the driver often recognises for themselves half-way through that it’s not going to end well. The rider will often see this change-of-mind when a driver starts to turn across the bike’s path then stops again, frequently ending up stranded across the road ahead of the bike.

This happened in front of me years ago when I was couriering. With a car coming the other way, I had no ‘out’ to the right of the emerging car but had just enough room to turn behind it and shoot obliquely between the gate posts from which the vehicle had just emerged, braking safely to a halt on an immaculate grassy lawn.

The ‘looked but failed to see’ and ‘looked, saw and misjudged’ errors are the classic ‘driver fails’. And it’s always been assumed that advice to use improved scanning techniques would reduce the frequency of these errors. But speaking plainly, the crash stats over the last fifty years of ‘Think Bike’ campaigns fails to turn up any significant change to the frequency of car – bike collisions. And that’s because the human eye and brain were never designed to work at the speed of traffic. The crashes happen because the weaknesses are effectively built-in.

LOOKED BUT COULD NOT SEE: But there’s a third category of error. In around one in five collisions, the rider simply wasn’t where the driver was able to see the bike when the driver looked. The driver ‘looked but COULD NOT SEE’ the bike because it was hidden.

And it’s easier for a bike to go missing than you may realise.

Just watch the video.

Watched it? That was an object the thickness of a PEN blocking our view of the approaching bike.

Now, remember the Constant Bearing issue? Think about what’s happening here. The bike’s not only not moving relative to the background, the fact that it’s on a constant bearing means it’s not moving relative to the vision-blocking pen. And it’s scary how close the bike got before it moved out to where you could see it.

The pen is a Vision Blocker. Think about how many objects there are around us that block lines-of-sight – post boxes, telegraph poles and trees, moving and parked cars, hedges and walls, people walking along the pavement…

…even another motorcycle on a group ride!

Now, I want you to watch the video again. This works best full screen on a PC monitor if you stand about five paces away from the screen. This time stretch your arm out, then hold your hand up vertically with the palm facing away from you, so that you’re looking at the back of your hand. Cover up the policeman and his pen. When do you see the bike now?

Now go sit in your car’s driving set and take a look at the A pillars supporting the front windscreen. If you look at the width of the pillar nearest you, you’ll find it’s about the width of your hand, and it’s about the same distance from your eyes as your hand was when you stretched your arm out.

If you’re still not ‘getting it’, get a friend to walk towards your car whilst trying to hide in the blind spot – they’ll know when they’re in it because they won’t be able to see YOUR eyes. It’s scary just how close they’ll get before you spot them. And a bike’s not much wider than a person.

So now… combine the Constant Bearing problem with the blind spots created by the car itself.

As you approach a vehicle, check where the driver’s head is relative to your line of approach. If their eyes are behind one of the pillars (and the B pillar supporting the doors and the C pillar behind the passenger doors are just as big a problem when approaching from the side or behind), then you’re NOT VISIBLE. You CANNOT BE SEEN.

And we can’t rely on drivers predicting that there MIGHT be a bike they can’t see.

So ask yourself: “how can I bring the driver’s eyes into MY own line-of-sight?”

The answers should be fairly obvious. To ‘break’ motion camouflage and the Constant Bearing problem, all we need to do is change position and speed and thus create some LATERAL movement – hopefully the driver will now see us though a wise rider would still be prepared to take evasive action.

And specifically, we want to identify, then move out from behind, any ‘Vision Blocker’ in order to bring our bike into the driver’s own line-of-sight. That way we ‘uncloak’ our bike, and at least give the driver a CHANCE of seeing us.

Sadly, reading the comments on the FB post where I spotted this video, it’s depressing how many simply missed the point.

There were the usual bunch of “car drivers don’t look properly” or “aren’t paying attention” theorists, though a minor logic check would tell them that if they weren’t ‘paying attention’ they’d be bouncing off everything around them and not just bikes.

Then there were the “car drivers are distracted by their phones” comments. Certainly, you’re at far higher risk of a collision if you are a mobile phone fiddler when driving, but relatively few police investigations into crashes in the UK suggest that the collision can be pinned on mobile phone use as a primary cause. That’s all covered in SOBS.

But my ‘favourite’ comment was probably:

“This just shows that we need to make bikes more visible.”

If you’re in a position where you CAN’T ACTUALLY BE SEEN, how on earth does the writer think that ‘making a bike more visible’ is going to work?

In terms of sage advice, it’s right up there with:

“Drivers, check your blind spots.”

How exactly? They are called blind spots for a reason.

If you want to find out more about the problems of being seen on two wheels, why not sign up for the next presentation of ‘Science Of Being Seen’, on Wednesday evening?


APRIL’S LIVE EVENT – ‘SOBS – the full presentation’
Science Of Being Seen is a 45 minute talk covering
human visual perception and motorcycle conspicuity,
and explains why conventional hi-vis clothing and
day-riding lights have proven less than successful at
preventing junction collisions. Discover how to use
Survival Skills ‘proactive measures’ in your own riding.
WEDNESDAY 6 APRIL 2022 AT 20:00 Tickets cost £5.


The original video was shown here:

SCIENCE OF BEING SEEN gets a write-up for Devitt

SOBS featured by Devitt Insurance

The ‘Science Of Being Seen’ (SOBS) has just got a comprehensive write-up on the Devitt motorcycling pages:


The Science Of Being Seen was part of the ‘Biker Down’ course in Kent since a pilot course run in early 2012. Here I am mid-presentation at Kent Fire & Rescue’s ‘Road Safety Experience’ facility in Rochester in 2019, explaining the phenomenon of ‘saccadic masking’


A little history…

After we won a Prince Michael of Kent International Road Safety Award at the end of 2012…

The Biker Down team from Kent Fire & Rescue Service at the Savoy November 2012 

…Biker Down was picked up by many of the other Fire and Rescue Services in the UK, and most of them used a version of SOBS as the Module Three ‘collision prevention’ element. 

  Setting up the laptop to run the presentation in 2019

Until COVID put everything on hold last March, I personally delivered the talk for ‘Biker Down’ in Kent for almost 10 years.

The KFRS website (June 2021) with SOBS as the third ‘pro-active’ module of Biker Down

In February in 2020, I was able to invite Brittany Morrow to see our course in action at Rochester in Kent whilst she was in the UK.

Brittany in a typical pose with the Biker Down team

Little did I know that was to be the final SOBS presentation I delivered for Biker Down Kent. 

Brittany with her Biker Down certificate of attendance   

I’ve run some special SOBS presentations as well, including one for MCN staff at Peterborough, and another for Honda UK at Bracknell. 
Danny John-Jules gets two of my books

The latter was attended by actor Danny John-Jules who was so impressed with my recommendation of pink as a hi-vis colour, he sent me some photos of him riding his own machine. 

Those bikes are VERY pink!

SOBS has also been recognised internationally. I personally took SOBS to New Zealand for their month-long Shiny Side Up roadshows in 2018 and 2019. 

SOBS in the tent at SSU in 2018!

On my second trip in 2019, SOBS was featured in a New Zealand bike magazine, and during the tour I was interviewed for the New Zealand Newshub show.

In 2020, SOBS featured on the US REVVTalks series and it was one of the presentations for the RoadSafetyGB powered two wheeler event earlier this year (2021).

And I made a virtual return for the 2021 Online SSU event after the roadshow was curtailed by a lockdown in New Zealand. 

The present…

Earlier this year I was informed that all elements of Biker Down in Kent would be brought ‘in-house’ and subsequently, the associated fire services decided it was time for a fresh presentation. 

And so, nearly a decade after I first put the pilot presentation together for firefighter Jim Sanderson at Kent, SOBS is no longer a part of Biker Down. 

And next, the future…

And so it’s time to relaunch Science Of Being Seen as a standalone project. 

And the first step along that path is added by this great work by David Williams on the Devitt website.  

I hope even more riders will become aware of the issues because SOBS provides vitally important information to ALL motorcyclists and drivers as it explains why motorcycles aren’t seen at junctions. 

And to ensure that SOBS remains in rider consciousness, I’ll be running a series of Science Of Being Seen LIVE ONLINE webcasts.

It’s YOUR CHANCE to see the ORIGINAL and FULL presentation, but constantly UPDATED with the most recent research.

The presentation explores a range of problems: 

:: ‘looked but COULD NOT see’ collisions, where for various reasons – including ‘beam blindness’ and the ‘constant bearing issue’ – it was physically impossible for the driver to see the motorcycle in the run up to the crash

:: ‘looked but FAILED TO see’ collisions, where the bike was in a place it could be seen but visual perception issues meant that the driver failed to spot the bike

:: ‘looked, SAW AND FORGOT’ collisions where short term visual memory and workload issues meant that the driver was likely to have seen the bike but mentally lost track of it

:: ‘looked, SAW AND MISJUDGED speed and distance’ collisions, which tend to happen on faster roads

We’ll also take an objective look at the effectiveness or otherwise of the usual ‘passive safety’ conspicuity aids – hi-vis clothing and day-riding lights (DRLs), before suggesting some general rules to make them more effective.

And the talk concludes with an explanation of the concept of a ‘Two to Tangle’ collision where someone else makes the initial error but the motorcyclist fails to take evasive action, then offers some simple pro-active measures any rider can take to reduce the risks of being caught up in a SMIDY collision themselves. 

NEXT PRESENTATION: Wednesday 6 October @ 8 PM.  




Look out for future webcasts on the first Wednesday of alternate months. 

I hope to see at least a few of you there!

“The Science Of Being Seen – understanding visual perception and motorcycle conspicuity” – a presentation from Kevin Williams of Survival Skills Rider Training.

Find out more about the SOBS project at https://scienceofbeingseen.wordpress.com
Support the SOBS project at www.ko-fi.com/survivalskills
Find out about Survival Skills post-test training courses at www.survivalskills.co.uk
Follow Survival Skills on Facebook at www.facebook.com/survivalskills

Latest from Survival Skills


BOOK YOUR TICKET HERE: http://thq.fyi/se/r2ljjEY

The ‘Science Of Being Seen’ (SOBS) presentation was originally created by myself (Kevin Williams MSc) over the winter of 2011-2012 as the third ‘accident prevention’ module of Kent Fire & Rescue’s pilot ‘Biker Down’ course. SOBS is an in-depth investigation of the most common motorcycle crash of all – the ‘Sorry Mate I Didn’t See You’ or ‘SMIDSY’ collision. The aim is to offer a better understanding of how, where and why these collisions happen, and to give riders some simple and practical strategies for staying out of trouble.

Science-based – SOBS was created to solve a practical riding problem – the SMIDSY collision – but is based firmly on scientific research into these crashes, a body of data extending back into the 1970s. The SOBS website is open to all, regularly updated and provides the background to the presentation, including offering full references for my work. 

Regularly updated – new studies continue to emerge and the talk has been updated regularly to reflect the latest thinking such as new studies on lighting arrangements to cope with the widespread use of day-running lights on cars, and the ‘looked, saw but forgot’ theory that appeared in the literature as recently as 2018. 

Award-winning – as well as an insurance industry award for Biker Down, our team at Kent was honoured with a Prince Michael of Kent International Road Safety Award which we collected at the Savoy Hotel in London in November 2012.

Used nationally – As more and more fire services across the UK adopted Biker Down, a stripped-down version of SOBS has been used as the third module on many of these courses, right up to the moment courses were shut down in March 2020 due to the COVID-19 pandemic. I personally continued to deliver SOBS to audience of motorcyclists at Rochester in Kent for KFRS until my final presentation in February 2020.

Delivered to rider groups – I have personally travelled out to clubs and rider groups around the UK in person to deliver SOBS, and more recently I’ve been giving the presentation online as COVID restrictions have made meetings difficult.

Going international – SOBS has also gained international recognition. In 2018 and 2019 I was one of a team of international speakers on the nationwide Shiny Side Up rider safety initiative in New Zealand, travelling around the country to visit over a dozen venues on each occasion. In 2021, I was a virtual speaker at Shiny Side Up. 

Available as a book – SOBS is also available as a paperback book or an ebook download. All funds from sales are ploughed back into website hosting, further research and writing. 

SOBS receives no funding – the SOBS project remains entirely self-funded.

WHAT IS SOBS? SOBS looks to explain why motorcycles aren’t seen at junctions. The talk explores a range of problems: 

  • ‘looked but COULD NOT see’ collisions, where for various reasons – including ‘beam blindness’ and the ‘constant bearing issue’ – it was physically impossible for the driver to see the motorcycle in the run up to the crash
  • ‘looked but FAILED TO see’ collisions, where the bike was in a place it could be seen but visual perception issues meant that the driver failed to spot the bike
  • ‘looked, SAW AND FORGOT’ collisions where short term visual memory and workload issues meant that the driver was likely to have seen the bike but mentally lost track of it
  • ‘looked, SAW AND MISJUDGED speed and distance’ collisions, which tend to happen on faster roads

We’ll also take an objective look at the effectiveness or otherwise of the usual ‘passive safety’ conspicuity aids – hi-vis clothing and day-riding lights (DRLs), before suggesting some general rules to make them more effective.

And the talk concludes with an explanation of the concept of a ‘Two to Tangle’ collision where someone else makes the initial error but the motorcyclist fails to take evasive action, then offers some simple pro-active measures any rider can take to reduce the risks of being caught up in a SMIDY collision themselves. 

This is YOUR CHANCE to see the ORIGINAL and FULL Science Of Being Seen presentation updated with the most recent research.

TICKETS ARE JUST £5. Attendance is limited to 30 people per event. Your access code will be emailed to you shortly before the event. 

BOOK YOUR TICKET HERE: http://thq.fyi/se/r2ljjEY

The Startle Effect – SOBS, meet No Surprise!

I’ve spent the last few Fridays looking at an unusual court case where a judge withdrew the case from the jury, after rejecting the prosecution’s case that a rider involved in a fatal collision with a pedestrian had to time react when the pedestrian stopped unexpectedly.

The incident reminded me of the words of Chesley Sullenberger – the Miracle on the Hudson pilot – “the startle factor is real, and it’s huge”. He was talking to a US Congressional hearing into the two aviation accidents involving Boeing’s 737 Max, and refuting claims that an alert and properly trained pilot could have dealt with the issues the plane was throwing at them.

Sound familiar?

Think Bike? Think again!

Now, take a look at the photo. You may remember it as one of the long-running series of ‘Think Bike’ products, aimed at the driver.

The idea is, given the target, to try to make a driver aware of just how hard a bike can be to spot.

As soon as I saw it, my thought was that the message should be ‘Biker, Think’. And that’s because it’s a perfect illustration of the point that I regularly make when discussing the Science Of Being Seen (#SOBS); the effect of any CONSPICUITY AID – in this case, the bike’s headlight – depends entirely on WHAT’S BEHIND the rider.

It’s not the lightness of clothing, or – as in this case – the brightness of the headlight, it’s the CONTRAST against the BACKGROUND.

And that’s the message that is so difficult to get over to riders, despite my best efforts and the inclusion of SOBS as a module of the Biker Down courses that have been run by so many fire services in the years since this campaign. When the photo reappeared the other day, the riders’ responses were predictable:

:: drivers don’t look hard enough for bikes

:: the rider should be wearing hi-vis clothing

They both miss the point.


Survival Skills has adapted! Have you?
Ride2Work & Ride4Fun courses!

Online video coaching AVAILABLE!

Drivers fail to spot motorcycles for well-documented reasons – in this case, it’s the camouflage effect of the bike lights against the wintery background behind the rider.

And the belief that conspicuity aids stop ‘looked but failed to see’ incidents is mistaken. There’s little compelling evidence from crash statistics – junction collisions are as common as they ever were. It’s easy to check.

So we end up with a double whammy…

a driver who either never sees the bike before pulling out – or possibly spots it halfway through pulling out and SURPRISED! stops dead, blocking the rider’s path…

and a rider who expects to be seen (“because I had my lights on and drivers are more likely to see bikes with lights”) and caught by SURPRISE! only reacts at the very last second when he / she realises the car’s pulling into the bike’s path.

Only by understanding BOTH the Science Of Being Seen AND the No Surprise? No Accident! approach to riding do we get a full understanding of the issues thrown up by this simple photograph of a bike blending into the background.

And we’ll only begin to reduce junction collisions by understanding BOTH sides of the collision – why the driver makes the error that puts the biker at risk, and why the biker fails to predict a highly predictable error. This is what’s known as ‘INSIGHT’ – seeking to offer understanding of the relationship between a specific cause and effect within a particular context.

It’s a type of learning that revolves around problem-solving through understanding the relationships between our own abilities (self-awareness) and the ‘system’ in which we’re operating. Insight is the basis for all my training, incidentally.

If we focus on simplistic and reductionist explanations alone, we may know WHAT went wrong, but without looking for embracing, holistic explanations we’ll never know WHY it went wrong.

For more information on both projects:


The Startle Effect – expect the unexpected

Holism is the belief that the parts of something are intimately interconnected and that a full understanding is only achievable in the context of the entire system. Ecology is a classic example, being a science which is based on the principle that the systems in which organisms exist are created by the interaction of those organisms with each other and their environment.

The opposite of the holistic approach is reductionism, aiming at achieving understanding by breaking things down into their smallest parts. It’s an approach that has been followed by experimental psychology which often assumes that human behaviour can be studied effectively in relatively simple experiments, where complex behaviour is reduced to isolated variables.

The examination of motorcycle crashes is often reductionist. For example, we look at riding errors and seek to pigeonhole them – I do it myself when I explain that the three main crash types are at junctions, in bends and when overtaking.

And when we study a single crash, we try to determine – via a forensic analysis – the individual steps that were taken, and specifically identify the failures believed to have led to the crash. “The rider should / shouldn’t have…”, “the driver should / shouldn’t have…”.

The trouble is that whilst we can often identify an error in the specific place things went wrong (“the rider entered the corner too fast, and ended up offline and on the wrong side of the centre line”, “the driver failed to see the motorcycle and emerged into its path”), finding the error itself doesn’t tell us just WHY the rider or the driver made the mistake JUST THERE and nowhere else.

As I often point out, the rider MUST have made it round plenty of other corners to crash where he or she did, and the driver MUST have emerged safely from many other junctions when there were bikes around.

The reality is that seemingly unique events are entwined within a much more complex matrix – faulty decisions that rider or driver took in the moments before a crash were not taken in isolation, but influenced by training, aptitude, attitude, the circumstances as they appeared to be and the assumptions made about what would happen, as well as being based on prior experience. “It worked last time.”

Personally, I’ve always thought we need a much more holistic approach to rider safety and that the mistakes and errors riders and drivers make are greater then merely the sum of parts.

Over the last two Fridays I’ve looked at what seemed to me a very unusual outcome of a police prosecution. The case was withdrew from the jury by the judge when he allowed that a rider involved in a fatal collision would have been unable to react in time when a pedestrian crossing the road spotted the bike and stopped unexpectedly.

The prosecution applied a reductionist approach, pinpointing the single error that led to the fatal collision – the rider should have reacted faster when the pedestrian stopped moving – whilst making the assumption that an ‘alert’ rider would have been able to react in such a short time.

But the judge took a more holistic approach and allowed that the rider had seen and reacted to the pedestrian crossing the road ahead of him, and that the rider’s prior experience would have been such that he wouldn’t have expected the pedestrian to stop in front of him, and that the steps taken to that point would have prevented a collision. Only when the pedestrian suddenly stopped unexpectedly did everything go wrong. Thanks to the ‘Startle Effect’ delaying an immediate reaction, it would have taken the rider more distance to stop than he had available.

This is not to say we should ignore rider error. We can certainly work to improve skills.

But it’s only by understanding the context in which a collision like this happened that we can train riders to be better prepared for similar events. Hindsight often makes a sequence of events quite obvious. The trick is to learn from incidents like this to give us the foresight to be prepared when the same situation happens to us.

Expecting the unexpected we’re far more likely to overcome the Startle Effect. Then we’ve a better chance of dealing with an emergency as it develops.

The Startle Effect part 2 “it’s real”

On Friday last week I covered at some length what seemed to me a very unusual outcome of a police prosecution of a rider after a judge withdrew the case from the jury. I was reminded of the words of Chesley Sullenberger – the Miracle on the Hudson pilot – “the startle factor is real, and it’s huge”.

Very briefly, pensioner Ghulam Rasul, aged 74, was badly injured when he was hit by a motorcycle ridden by David Hurst, 52. The collision happened when Mr Rasul was crossing the road in Leigh, in the Wigan area, on September 10, 2019. Mr Rasul did not gain consciousness after suffering severe head injuries and died two days later in hospital. Mr Hurst spent three days in hospital after suffering neck injuries and a broken nose.

Mr Hurst was charged with causing death through careless driving, he pleaded not guilty, and the case finally came to court last week.

The prosecution alleged that the rider had only reduced his speed ‘at the point of no return’. Without a full transcript and only the paper’s report to go on, the key point seems to be that the prosecution set out to prove that

“Mr Hurst put himself in a position where the collision became unavoidable.”

To understand that, you have to put yourself into the shoes of a prudent motorcyclist and argue that such a rider would have done differently.

But – and here I have to confess my utter astonishment – having heard evidence for the defence, Judge Paul Lawton withdrew the case from the jury and gave a not guilty verdict.

His reasoning – as told to the jury – was that he had concluded it was “impossible” for them to put themselves in the defendant’s position with the evidence put before them. He cited the ‘dynamics of the accident’.

As I also mentioned on Friday, unlike most collisions where much of the evidence is based on eye witness statements or forensic evidence such as skid marks, in this case the entire incident appears to have been visible on CCTV.

And this means the rider’s responses to the pedestrian’s movements could be closely followed.

Expert witnesses said that nothing he’d done was inappropriate. The road is a 30 limit and CCTV showed that Mr Hurst saw the pedestrian and braked almost forty metres away – way beyond ’emergency stopping distance’ at 30 mph.

The prosecution’s case hinged on the rider’s inability to respond IMMEDIATELY when the pedestrian unexpectedly hesitated in his path.

Judge Lawton said “At 14.6 metres Mr Rasul froze which was an understandable response but entirely unpredictable.”

The judge continued by saying that Mr Hurst could have stopped with a 0.5 second reaction time – and that suggests to me that the rider had slowed to somewhere around 20 mph.

The crucial factor is that’s ‘best case scenario’ reaction time. It’s not just about being ‘alert’ or ‘careful’ or ‘prudent’.

We actually have to KNOW exactly what is going to happen next in order to hit the brakes to pull of that kind of reaction time.

As we do when we’ve reached the part of the car or bike test where are told that we have to perform an emergency stop.

I don’t have the full court transcript but the implication is that the prosecution’s case was that the ‘prudent rider’ should have known he would HAVE TO STOP and therefore SHOULD have reacted that fast.

Fortunately for the rider, real life intruded. The judge told the court that a normal reaction time to an unexpected event was 0.7 to 2 seconds, and to my astonishment said:

“The court is to award him the two second reaction time.”

OK, so that’s what happened in the court.

So where does this two second reaction time come from?

The answer is what’s been called ‘The Startle Effect’.

The conventional approach to motorcycle training has always been to train riders in emergency manoeuvres. Anyone who’s taken bike training in the last 30+ years knows how to perform and emergency stop, and the swerve exercise has been part of the motorcycle test here in the UK for almost a decade now.

But in an emergency, things rarely go to plan.

We’ve known for a long time that the direct cause of many motorcycle crashes is an inappropriate response to an emergency. Typically we over-react (for example, by grabbing a big handful of brake – which explains why ABS is now mandatory) or target fixate (by looking at the hazard, not the way out of trouble).

Keith Code identified these inappropriate responses years ago, and called them ‘Survival Reactions’.

Code also identified a third Survival Reaction – in a significant number of crashes, the rider simply freezes and completely fails to make any meaningful response – including braking when something or someone pulls out or steps out into the rider’s path.

I’ll call this the Startle Effect for reasons which will become obvious.

So if Code identified the ISSUES US researcher James Ouellet got his tape measure out to put some numbers on car / bike collisions at junctions. And he found that if things went wrong when the rider was three seconds or more from the collision point, there was almost always a good outcome – the rider was able to take effective evasive action.

If things went wrong with less than three seconds to the collision point, many riders who COULD have braked to a halt failed to do so.

Something derailed that rider’s response mid-emergency.

So the question we have to ask is “Why don’t we perform in the way we’ve been trained? Why do Survival Reactions kick-in and what triggers the Survival Reactions themselves? “

No Surprise? No Accident believes it’s SURPRISE! We’re surprised by unexpected events, when the situation begins to develop in a way we hadn’t anticipated.

As with so much safety research, the airline industry is well ahead of road safety.

Here’s something snipped from a study from Griffiths University in Australia:

“When a sudden upset occurs – such as icing or powerful air currents from a storm – even the best pilots can experience a “startle effect” and may struggle to recall manual flying skills for that rare situation… a person’s ability to process information is significantly impaired for 30 seconds after being startled…”

As Duncan McKillop commented on the original post:

“You will remember that Chesley Sullenberger ditched his Airbus in the Hudson because of the delay in recognising the unfolding situation for what it was and then doing something (skilfully) about it. In the simulator a primed pilot could have made Teterboro airport, but only with zero delay between event and reaction.”

It’s that ’emergency stop scenario’ again.

When pilots were told where they were (height, vector, speed, and directions and distances to the various airfields) and THEN the engines were cut, it was JUST possible to glide the plane to, and set down safely at Teterboro.

Sullenberger and Jeffrey Skiles didn’t have that advantage. They had to deal with the emergency developing in real time, and find an entirely novel solution. The entire flight lasted just six minutes.

Sullenberger was also called as a witness to a US Congressional hearing into the two aviation accidents involving Boeing’s 737 Max.

Not surprisingly, with the impact of the two crashes on Boeing, there was an effort to shift at least some of the blame for the crashes onto the crew, with one congressman saying that “facts in the preliminary report reveal pilot error as a factor”.

I wrote about this at the time. Sullenberger strongly disagreed and called for pilot training on the model saying that a review of the modifications to the aircraft on a computer was insufficient. He said:

“I can tell you first hand that the startle-factor is real, and it’s huge. And it absolutely and it quickly interferes with one’s ability to quickly analyse the crisis and take effective action.”

“Pilots must develop the muscle memory to be able to quickly and effectively respond to a sudden emergency. Reading about it on an iPad is not even close to sufficient; pilots must experience it physically, firsthand.”

Now, that’s a highly-trained pilot. We know full well that road users are nowhere near as well-trained.

And read Sullenberger’s thinking about the need for FIRSTHAND training – he’s talking about simulator time.

And put that in context with bike training in emergency braking and swerving.

All that training is delivered in a sterile, off-road and HAZARD-FREE environment. We may learn the technical skills to stop or swerve but there’s no context and no connection to a real emergency. We’re simply swerving round cones.

It’s so sterile many riders who pass the test never even make the connect between the swerve manoeuvre and the situations on the road where a sudden change of direction might be needed – to avoid a pothole, to dodge an emerging car, to correct for an unexpectedly tight bend.

How do we make that connection between ‘skill’ and ’emergency’? Simulators would be a huge help.

There’s a second issue. We can be told that the roads are risky places, but our experience teaches us the opposite – that as a general rule, “things don’t go wrong”…

…until they do.

Pedestrians crossing the road ahead of us keep going. They don’t suddenly stop and ‘shuffle backwards and forwards’ when we’re just fifteen metres away. We’re even TAUGHT that this is what happens in the DVSA theory test. Millions has been invested in changing the theory test to use CGI rather than video footage, but watch the videos.


You may have to mouse-click (there’s a skill we use all the time on a motorcycle) on the ‘developing hazard’ but what happens if you don’t? The hazard FAILS to turn into a life-threatening situation. The video does not stop with GAME OVER flashing on screen. Life – quite literally – carries on.

Rather than invest in simulators to train riders and drivers for things that WILL go wrong, we still want to blame the rider or driver for failing to cope with a one-off event, something they are highly unlikely to have experienced before, and will almost certainly never experience again.

With a few exceptions like this remarkable decision, it’s still broadly assumed that it’s ‘bad riders’ (and bad drivers) who have crashes, and that the solution is ‘better behaviour’ and ‘better skills’.

I make no apologies for saying this over and over because it’s crucial to understanding why it was your best riding buddy, the rider who was “such a safe rider and never in a rush” or that rider from your advanced group, “the one we never thought would have a bad crash”, who actually did come to grief.

The aviation world has known about the Startle Effect for a couple of decades at least. Road safety?

It’s ignored.

Or – if not ignored – known only to insiders, as a comment on my original Facebook post made clear. I was contacted by a retired police accident investigator. He said “I think that you are wide of the mark when claiming that the startle effect is not known in the world of road safety. We may not have called it that a quarter of a century ago, but we took it into account.”

And he went on to explain that: “the average ‘reaction’ time for a normal driver to realise what was going on when faced with an unusual problem, formulate a plan to deal with it, and initiate such a plan was taken to be in the region of at least 1.5-2 seconds”.

Now, put that in perspective with what I’ve just written. If we take that upper limit of 2 seconds to “realise, formulate and initiate” then subtract the 0.7 seconds which is the average physical ‘reaction’ time for a driver or rider who KNOWS what he or she is going to do already, then it’s allowing A MAXIMUM of 1.3 seconds to actually recognise and analyse the situation, AND to come up with a plan to deal with it.

He continued: “for a driver to considered as being careless, one would be looking for a ‘reaction time’ of between 2-4 seconds.” Or having deducted the physical reaction time, if it takes you or me between 1.3 to 3.3 seconds to “realise, formulate and initiate” the response to the situation, we’re deemed ‘careless’, despite this delay being entirely within the limits of the cognitive delay – the SURPRISE! factor – created by the Startle Effect.

The implication is that riders and drivers are not allowed to be startled by events! And you’ll notice that in the failed prosecution, the police who prepared the case clearly weren’t allowing the rider anything other than an instantaneous reaction to the pedestrian’s unexpected hesitation ahead of him.

In any case, I’d say that being ‘aware of’ of the Startle Effect at the forensic level of police accident investigation, and the failure to ‘factor in’ of the Startle Effect at any level of rider and driver training in order to create road users who are more prepared to deal with the unexpected and avoid the mental block caused by SURPRISE! are two very different things.

Currently, we still seem to want riders and drivers to be able to respond like machines, and if they do get caught out reacting like humans, the response is that they should be punished…

…as if that will help the next pedestrian who hesitates in front of a startled rider who wasn’t expecting to have to take emergency action.

…or the next rider who falls victim to a ‘Sorry Mate I Didn’t See You’ error.

The Startle Effect part 1

At the end of March 2021, a court verdict in the Manchester Evening News drew my immediate attention because it appears to recognise that the Highway Code’s advice on stopping distances is – as I have said for many years – inadequate and misleading and unfairly penalises riders and drivers who have crashes.

On the face of it, it appears to be a tragic but fairly standard incident.

An elderly pedestrian steps into the path of motorcyclist… the motorcyclist is unable to stop… the pedestrian is seriously injured and dies two days later… the motorcyclist spends three days in hospital but is charged with “causing death by careless driving”.

Rider David Hurst, 52, pleaded not guilty to the charge relating to the death of Ghulam Rasul, 74, at an earlier hearing in Bolton back in November 2019. The case was finally heard this week.

The prosecution case was also familiar. The prosecution compares the real-time actions of the rider with the steps that a hypothetical ‘prudent’ rider would have behaved in these circumstances. In essence, the argument put forward was this:

:: having seen what was happening the rider should have taken steps to avoid the collision
:: those steps should have been obvious given the situation developing ahead of the rider

Since the rider DID hit the pedestrian, the train of thinking is that the rider SHOULD have taken EARLIER STEPS to PREVENT the collision.

Mr David Lees, prosecuting, said “as [Mr Rasul] was crossing the road, I would have expected Mr Hurst to keep an eye on him.” He argued that Mr Hurst “should have applied his brakes earlier” and “should have slowed down to give himself time to minimise the risk”.

Mr Lees also stated that “he could and should have taken some action such as moving the bike away from Mr Rasul but he did not…. he was beholden that he took a number of actions. He should have slowed down well before the point that Mr Rasul stopped walking… Mr Hurst should have turned his wheel away from Mr Rasul but didn’t.”

The key claim was that the rider had only reduced his speed ‘at the point of no return’ and the prosecution’s conclusion was therefore that “Mr Hurst PUT HIMSELF in a position where the collision became unavoidable”. [My capitals.]

This is, of course, looking at the circumstances with two huge advantages:

:: the benefit of hindsight to look back at potential decision points where the rider COULD have made different choices
:: the benefit of time in which to analyse the situation and show those different choices EXISTED in the first place

Fortunately for Mr Hurst, he had two expert witnesses on hand who reviewed the CCTV footage and put forward a contrary opinion – that there was nothing to suggest that Mr Hurst was NOT alert and there was nothing INAPPROPRIATE with his speed and driving. [My capitals.]

And in what seems to have been the crucial piece of evidence, Dave Poole, a retired accident investigator for Greater Manchester Police, brought up the topic of individual reaction times.

The circumstances of the collision were that Mr Hurst and Mr Rasul would NOT have collided until Mr Rasul hesitated directly in the path of the motorcycle and in the word of the defence council “shuffled” from side to side in a period of indecision.

In his view, Mr Hurst would have been aware of Mr Rasul crossing the road ahead of him but, when he stopped and hesitated, “it would have created a new element for Mr Hurst presenting him with a new set of considerations.”

And this turned out to be crucial in Judge Paul Lawton’s view.

He said: “At 38.5 metres we know that Mr Hurst had seen Mr Rasul and his brake light came on.”

Given that the judge will go on to talking about reaction time, it’s helpful to convert distances to time.

A bit of research on Googlemaps indicates that the speed limit is 30 mph. None of the evidence suggests that Mr Hurst was travelling at more than 30 mph, so if we assume that the bike was moving at 30 mph, then the rider would have been travelling at 13.4 metres per second.

So at a speed of 30 mph, and at a distance of 38.5 metres, the rider reacted by applying the brakes a minimum of 2.87 seconds before the collision.

If we look at the Highway Code you’ll see that the stopping distance from 30 mph is given as 9 metres ‘thinking time’ + 14 metres ‘braking distance’ adding up to a total stopping distance of 23 metres.

The 9 metre ‘thinking time’ equates to a delay of 0.7 second before the brakes are applied. And some fairly straightforward trials of a modern bike would suggest that a modestly-competent rider should be able to stop in perhaps ten metres once the brakes are on, and thus pull the bike to a stop a bit sooner than the Highway Code suggests.

Back to the evidence.

At the point when Mr Hurst first braked he was well outside this ’emergency’ stopping distance. The judge observed: “No motorist has to do an emergency stop because they anticipate a hazard 40 metres in front of them. If everyone did that it would cause more accidents.”

And here’s where it all went wrong.

Judge Paul Lawton noted that “at 14.6 metres Mr Rasul froze which was an understandable response but ENTIRELY UNPREDICTABLE.” [My capitals.]

Now, we don’t know how fast Mr Hurst was travelling at this point, all we know is that the brakes had been applied, so presumably SOME speed had been lost – remember the expert witness said that there was nothing to suggest that Mr Hurst was NOT alert and there was nothing INAPPROPRIATE with his speed.

But since Judge Lawton went on to say that Mr Hurst could have stopped with a 0.5 second reaction time, the implication is that he’d probably slowed to around 20 mph at this point – the Highway Code offers a 12 metre stopping distance from this speed. If he had braked hard IMMEDIATELY he would have stopped with a couple of metres to spare.

But… and this is the crucial point… this 0.5 second reaction time is based on a event where the rider has ALREADY RECOGNISED THE SITUATION as one requiring emergency braking and REACTS INSTANTANEOUSLY.

And that’s just not how the human brain copes with suddenly-changing circumstances. We have to interpret the new data and come up with a new plan. And that all takes TIME.

As I’ve said many times for many years:

“…people still have these accidents in 30 limits where conventional wisdom re stopping distances says they should be able to stop easily and the reason is they are taken by SURPRISE!

“There’s usually a three second window from the time things start to go bad to the moment of impact. The bad news is that it can take our brains up to TWO SECONDS to realise that things ARE going wrong – what I call ‘recognition time’. This leaves a totally inadequate one second to deal with the emergency. Even at 30mph that’s not enough and is why so many riders collide with vehicles in urban areas…”

Or in this case, with the pedestrian, with the tragic consequences resulting.

I wrote those two paragraphs on Facebook all the way back in September 2014, so it’s hardly ‘new thinking’.

But prosecution cases continue to be built, then delivered to courts, based on mistaken belief that riders and drivers ARE ABLE TO RESPOND INSTANTLY. And juries – not surprisingly, since they are being led to this conclusion by the prosecution’s evidence – continue to convict riders and drivers for failing to react instantly.

So having read that the judge said that Mr Hurst COULD have stopped with a 0.5 second reaction time, you may imagine just how surprised I was when Judge Lawton qualified that statement by stating that the NORMAL reaction time was 0.7 to 2 seconds. [My capitals again.]

And when I read that he stated that “The court is to award him the two second reaction time” I was absolutely gobsmacked.

And when I read his concluding words, I fell off my chair…

“The jury are being asked to put themselves in Mr Hurst’s position.

“I have concluded that it is impossible for a jury to do that with the evidence put before them.

“Considering the evidence given and the dynamics of the accident I withdraw the case from you at this stage.”

In essence, what this judgement does is accept that SHOCK AND SURPRISE exist on BOTH sides of an incident like this.

If the judge could accept that “at 14.6 metres Mr Rasul froze which was an understandable response”, then his judgement allows for a similar frozen response in the rider as Mr Rasul unpredictably stopped moving in front of the bike.

As far as I know – and I am far from a legal expert – this is something of a precedent.

I do know some people will undoubtedly see this as a terrible decision, arguing that it’s a charter for careless riders and drivers to mow down vulnerable road users.

It’s not, it’s a clearsighted acceptance that the human brain doesn’t function in the straightforward linear “see hazard, do something, avoid crash” fashion that ‘road safety’ generally assumes. Instead, in unexpected circumstances, there is a ‘Startle Effect’ which temporarily paralyses us.

And it allows that it’s wrong to blame ordinary people who find themselves caught out in exceptional circumstances and who, being forced to make a decision, make the wrong choice.

So where do we go from here?

We can try to make the system safer – that’s more 20 limits in streets busy with pedestrians, barriers to prevent pedestrians crossing other than at designated crossing points, passive safety design changes to cars.

But we can also change the way road users think about safety.

The answer is that we should be shifting the way we think about road safety generally, away from a belief that it’s the behaviour of a few ‘bad apples’ cause crashes and towards system that accepts that most crashes involve ordinary drivers doing ordinary things in everyday situations that for some reason go wrong in this particular set of circumstances.

What’s needed is not to educate drivers and riders “not to make mistakes” but to educate drivers and riders to EXPECT HUMAN ERROR in others, so that when someone does do something UNUSUAL, it’s not UNEXPECTED and the rider or driver does not suffer that cognitive delay whilst they recognise things aren’t going as planned.

If Mr Hurst had a mental picture in his head that Mr Rasul MIGHT stop in his path, he may well have reacted instantly and avoided the collision and Mr Rasul would still be with us today.

Nothing can compensate Mr Rasul for the loss of his life. Nothing can compensate his friends and family. Nor will fining, banning or even jailing Mr Hurst – there’s a potential three year jail term for the offence he was charged with – make the roads safer for anyone.

Like ✔ Comment ✔ Share ✔ Follow ✔
FIND OUT how you can get Survival Skills!

visit the website at www.survivalskills.co.uk

survivalskills #advancedriding #skillsonsaturday #tipsontuesday #focusonfriday #nosurprise #scienceofbeingseen #SOBS #CrashCourse #shinysideup2021 #RideForever #ACC

Photo Credit: Charles D P Miller CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=59850991

Covid-19 Update – join our Online Sessions!

Join our Online Sessions!

As you have probably realised, my face-to-face training is on indefinite hold in response to the coronavirus outbreak.

But that doesn’t mean that I’ve shut up shop completely.

Survival Skills has gone online!

WEBCHAT – ‘Elevenses’
Join me, Kevin Williams, on Monday, Wednesday, Friday and Sunday at 11am for topic news, controversial views and two-wheel tips on my new ‘Elevenses’ LIVE show – pop along to my free-to-view Facebook page and set a reminder!
VIDEOS – YouTube channel
I’ve had a YouTube channel for years but have always been too busy to fully exploit it. But now with some time on my hands I’m starting to populate it with videos covering various aspects of biking skills. It’s a work in progress at the moment, but bookmark it and come back to it at intervals to see what’s new:
VIDEO SURGERY – the doctor is IN
I’m also offering 1:1 online video sessions from my virtual office. Got a riding issue or a question about biking skills? Drop me a line here and I’ll organise a live webinar with you. No charge, just an invitation to contribute a donation to support the work I do:
Want to get your skills in tip-top shape ready for when we can all get back out on the road? Then take a look at the brand-new Survival Skills
e-course that delivers the content of the Performance: BENDS one-day course in an online environment. View the info page with no obligation and the first module is completely free. Find it here:

For any questions on any of the Survival Skills online activities, drop me a line.

Looking forward to seeing you online!

Kevin Williams
Survival Skills Rider Training
…because it’s a jungle out there

*** COMMENT *** Is training working?

Ever since bicycles were invented, riders have been crashing two-wheelers. It might seem obvious that making a hole in a hedge is a lack of skill, and that if riders crash because they aren’t riding well enough, then we should train them to ride better and keep our hedges intact.

As I’ve been writing about the challenge of reducing casualties in the forthcoming book ‘Survival Skills’, I’ve been doing a lot of research on the topic, so I was interested to see an article written by Graham Hay last week for the BMF, entitled: “Motorcycle road safety: Have we been missing out?” in which he promotes the role of further training.

As I have explained in ‘Survival Skills’, the leap of logic that infers that training is a short-cut allowing us to learn from someone else’s experience dates back millennia. Ancient Greek and Roman soldiers drilled to learn skills that had been found effective in battle.

So it’s perhaps no great surprise that the earliest rider training I have found involved the military. Motorcycles went to war in the Great War and a training camp for despatch riders was established in Buxton.

The police driver training school at Hendon opened between the wars. The official motorcycle test was introduced in the 1930s. Motorcycle despatch riders again played an important role in the Second World War and post-war, police training followed the military pattern. The first step to introduce civilian training to reduce the motorcycle accident rate was taken with the original voluntary RAC-ACU scheme back in the 1950s.

And so on, to the current situation where training is compulsory, led by commercial training schools and approved by the DVSA, with instruction undertaken mostly delivered by qualified instructors, whilst testing is a complex affair of the two-part test and stepped, age-related licenses.

Graham concludes that: “…motorcycling has achieved all that it has through rider-skills. The evidence shows that there has been precious little else.”

If I understand correctly, what underpins Graham’s argument is his conclusion that the car test hasn’t significantly changed but cars have got safer, while in the same time frame the bike test has changed a lot but the bikes we ride haven’t improved.

He says:

“The reduction in deaths and serious injuries for car occupants has, in the greater part, been achieved through safety engineering in the design of cars and the design of the roads they drive on. There is no evidence to suggest that fewer collisions take place; the cars are just safer to be in when they are crashed… so much has been added to modern cars to make collisions less likely and the consequences much less, motorcycles of a similar type have not really changed.”

To make his point that nothing much has changed in bike technology, Hay goes on to compare a vintage bike with a heritage replica, whilst showing just how much more technologically sophisticated cars have become.

Does the argument stand up to examination? I don’t think so. At best it’s a strained piece of logic.

He flags up the fact both bikes ride on the same Dunlop tyre, but a ‘heritage replica’ tyre in 2016 isn’t the same piece of rock-hard rubber as existed in 1971. The brakes may not be sophisticated but they work predictably and effectively, particularly in comparison with the earliest disc brakes that were just starting to appear on bikes in the early 1970s; who remembers wet lag? He fails to mention the heritage replica has a halogen headlight and a generally superior electrical system.

Fundamentally, though, the A65 Lightning was a relatively high-performance sports model in its day, albeit one at the terminal end of a long development cycle. A more honest comparison might have been with a machine like the Honda VFR800, another relatively high-performance model at the end of a long development cycle. Maybe modern machines perform no better IN a crash, but they certainly help riders stay out some of the crashes the old machines couldn’t prevent.

Nor do I agree with him when he says: “PPE has become better; of that there is no doubt but it is no comparison to multiple airbags etc.” PPE cannot replicate a safety cage, of that there is no doubt. Nor are there airbags or collapsible handlebars* on motorcycles to prevent the same sort of injuries that airbags and collapsible steering columns prevent in cars.

But we also have to remember that a serious injury that appears in the KSI statistics is just about anything requiring medical intervention. For a rider, the most important pieces of safety technology are abrasion-resistant clothing (which prevents a lot of soft-tissue injury) and the helmet (which is instrumental in preventing head injury).

Back then, riding kit was likely to be a leather or waxed cotton jacket, gloves and boots, and a pair of denims. I’ve a road rash scar myself caused by disintegrating jeans. Now, the average biker chooses to wear more protective clothing, and mostly the kit is much better quality. That will undoubtedly have impacted on the numbers of riders who walk away from the sort of crash that formerly required a hospital visit. A pair of modern gloves that prevented a broken finger means one less entry in the KSI stats.

In 1971, helmet technology was still in its relative infancy. Even in the early 1980s, if a lid stayed in one piece and on your head in a crash, that was an achievement. In a clear case where racing has improved the breed, modern helmets have undoubtedly reduced fatalities. You only have to look at the comparative death rates in US states with no helmet law to see that.

So has training had positive effects? I’d say the jury is out. I’ve previously reported research studies which fail to show training has long-term benefits.

One of the interesting observations I made when looking at the incomplete KSI figures I was able to obtain, was that the big dips in fatality rates did not match up with training. One dip did follow the introduction of the old Part 1 / Part 2 test that came in in the early 80s, but actually corresponded far better with the immediate slump in motorcycle registrations that resulted.

CBT, dating from 1990, didn’t produce obvious results in terms of a dip in the KSI rates either, nor has research suggested any link. Nor has the latest split test or tiered license system. In fact, the latest figures appear to show an up-turn in motorcycle casualties.

But rather than talk casualties, let’s look at where the accidents happen. And here’s the really interesting observation. In 2016, we’re still having the same crashes in the same places our great-grandparents crashed in the 1950s.

Drill back through the data, through the years covered by the RAC/ACU scheme of the 50 and 60s, the BMF training of the 70s, Star Rider of the 80s, compulsory training of the 90s, Direct Access, off-road Module One and on-road Module Two, or the latest EU-mandated tired licenses.

Ask: “what’s the most common crash?”

The answer? The ‘right of way violation’ resulting from the ‘looked but did not see’ error.

I can’t see any evidence training is achieving any improvement in terms of ‘standard accidents’ at junctions, nor in corners or when overtaking. They remain the same source of numbers for the KSI figures as they always have.

It’s actually quite illuminating that Hay made almost exactly the same factual statement as I have in the book – that rider KSIs have been falling since the 1920s – yet we have come to such very different conclusions as to why.

He concludes with a very valid observation, that it will take a while for the next level of technological innovation, compulsory ABS, to filter its way through the KSI numbers to see what the impact is. Even though ABS has been around for thirty years, there are still large numbers of non-ABS equipped machines in the circulating pool and it will be some time before the majority of machines are ABS-fitted.

He also makes a very valid criticism of the EU legislation: “It is a sad fact that the learner riders’ bikes, where price is a key concern, are most likely to have the linked [brakes] system as opposed to the ABS. So the riders who need [ABS] most, will be denied it.”

This observation – though valid in itself – reveals the paradox that Graham seems to have failed to spot when arguing that what’s been achieved has been achieved through training. If training – specifically CBT in the case of the L plate riders on 125s – is doing such a good job, why is that that they are “the riders who need it most”?

We think we know the answer. ‘No Surprise? No Accident!’ It’s not more of the same that’s needed, it’s a realignment of our thinking.


[*I seem to remember a recent model has collapsible handlebars – BMW?]